

Types of Conditions in Triangulation Networks

Reda FEKRY
reda.abdelkawy@feng.bu.edu.eg

CONTENTS

$>$ What is meant by conditions?
$>$ Types of conditions
Different methods to compute internal conditions
Examples

What is a condition in control survey?

- A condition means
- Please follow the board

External Conditions

Scale

The computed length of a side must equal its known length or differ by a value within tolerance.
$>$ Orientation

The computed azimuth of a side must equal its known azimuth or differ by a value within tolerance.
> Position
The computed coordinates of a point must equal its known coordinates or differ by a value within tolerance.

Internal (Geometric) Conditions

Local condition

The sum of angles taken at certain station should equal a pre-specified value.

$>$ Side condition

The length of a side should equal specific value whatever the route used in calculation.
$>$ Angle / Triangle condition

The sum of the internal angles of a polygon should equals $(\mathrm{n}-2) \times 180^{\circ}+\varepsilon$

(1) By Law

(1) By Law

$>$ The total number of geometric conditions C_{T} in a figure is:

$$
C_{T}=O_{T}-O_{n e c}
$$

Where:
$O_{T} \quad$................ Total number of observations
$O_{\text {nec. } ~ N u m b e r ~ o f ~ n e c e s s a r y ~ o b s e r v a t i o n s ~}^{\text {n }}$

(1) By Law

(1) Angle Conditions

$>$ The total number of geometric conditions C_{A} in a figure is:

$$
C_{A}=\left(L-L^{\prime}\right)-\left(S-S^{\prime}\right)+1
$$

Where:

(1) By Law

(2) Side Conditions

$>$ The total number of side conditions C_{S} in a figure is:

$$
C_{S}=L-2 S+3
$$

Where:
L............... Total number of lines.
S
Total number of stations.

(1) By Law

(3) Local Conditions

$>$ The total number of Local conditions $C_{\text {Local }}$ in a figure is:

$$
C_{\text {Local }}=C_{T}-C_{A}-C_{S}
$$

Where:
$C_{T} \ldots ~ T o t a l ~ n u m b e r ~ o f ~ c o n d i t i o n s . ~$
$C_{A} \ldots \ldots$. Total number of angle conditions.
$C_{S} \ldots \ldots \ldots$. Total number of side conditions.

(1) By Law - Example

Calculate the number of different types of internal conditions in the following braced quadrilateral.
Known points $=2$ (baseline)
New points = 2 (C, D)
Total number of observation $O_{T}=8$
Number of necessary observations $O_{\text {nec }}=2 \times$ new points $=2 \times 2=4$
Total number of conditions $C_{T}=O_{T}-O_{\text {nec }}=8-4=4$
Number of triangle conditions $C_{A}=\left(L-L^{\prime}\right)-\left(S-S^{\prime}\right)+1$
$=(6-0)-(4-0)+1=3$

Number of side conditions $C_{S}=L-2 S+3=6-8+3=1$
Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=4-3-1=\mathbf{0}$

(2) Point By Point

(2) Point By Point

Calculate the number of different types of internal conditions in the following braced quadrilateral.

Point	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{s}}$
A	-	-
B	-	-
C	$2-1=1$	$2-2=0$
D	$3-1=2$	$3-2=1$
Total	3	1

(a)

(3) Triangle By Triangle

(3) Triangle By Triangle

Calculate the number of different types of internal conditions in the following braced quadrilateral.

Triangle	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{s}}$
ABC	1	0
ABD	1	0
CD	1	1
Total	3	1

(a)

Numerical Examples

(1) Calculate the number of different types of geometric conditions in the following figure:

Known points $=2$ (baseline)
New points = 3 (C, D, E)
Total number of observation $O_{T}=12$
Number of necessary observations $O_{n e c}=2 \times$ new points $=2 \times 3=6$
Total number of conditions $C_{T}=O_{T}-O_{n e c}=12-6=6$

Number of triangle conditions $C_{A}=\left(L-L^{\prime}\right)-\left(S-S^{\prime}\right)+1=(10-4)-(5-1)+1=3$
Number of side conditions $C_{S}=L-2 S+3=10-10+3=3$
Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=6-3-3=0$

Numerical Examples

(1) Calculate the number of different types of geometric conditions in the following figure:

Point by point

Point	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{s}}$
A	-	-
B	-	-
C	$2-1=1$	$2-2=0$
D	$3-1=2$	$3-2=1$
E	0	$4-2=2$
Total	$\mathbf{3}$	$\mathbf{3}$

Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=6-3-3=0$

Numerical Examples

(1) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{s}}$
ABC	1	0
ACD	1	0
CDE	0	0
BD	1	1
EA	0	1
EB	0	1
Total	3	3

Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=6-3-3=0$

Numerical Examples

(2) Calculate the number of different types of geometric conditions in the following figure:

Known points $=2$ (baseline)
New points = 3 (C, D, E)
Total number of observation $O_{T}=13$
Number of necessary observations $O_{n e c}=2 \times$ new points $=2 \times 3=6$
Total number of conditions $C_{T}=O_{T}-O_{n e c}=13-6=7$
Number of triangle conditions $C_{A}=\left(L-L^{\prime}\right)-\left(S-S^{\prime}\right)+1=(9-0)-(5-0)+1=5$

Number of side conditions $C_{S}=L-2 S+3=9-10+3=2$
Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=7-5-2=\mathbf{0}$

Numerical Examples

(2) Calculate the number of different types of geometric conditions in the following figure:

Point by point

Point	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{s}}$
A	-	-
B	-	-
C	$2-1=1$	$2-2=0$
D	$2-1=1$	$2-2=0$
E	$4-1=3$	$4-2=2$
Total	$\mathbf{5}$	$\mathbf{2}$

Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=7-5-2=\mathbf{0}$

Numerical Examples

(2) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{s}}$
ABC	1	0
ABE	1	0
EBD	1	0
EC	1	1
ED	1	1
Total	$\mathbf{5}$	$\mathbf{2}$

Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=7-5-2=\mathbf{0}$

Numerical Examples

(3) Calculate the number of different types of geometric conditions in the following figure:

Known points $=2$ (baseline)
New points $=3$ (C, D, M)
Total number of observation $O_{T}=12$
Number of necessary observations $O_{\text {nec }}=2 \times$ new points $=2 \times 3=6$
Total number of conditions $C_{T}=O_{T}-O_{n e c}=12-6=6$

Number of triangle conditions $C_{A}=\left(L-L^{\prime}\right)-\left(S-S^{\prime}\right)+1=(10-4)-(5-1)+1=3$
Number of side conditions $C_{S}=L-2 S+3=10-10+3=3$
Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=6-3-3=\mathbf{0}$

Numerical Examples

(3) Calculate the number of different types of geometric conditions in the following figure:

Point by point

Point	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{S}}$
A	-	-
B	-	-
C	$2-1=1$	$2-2=0$
D	$3-1=2$	$3-2=1$
M	0	$4-2=2$
Total	$\mathbf{3}$	3

Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=6-3-3=\mathbf{0}$

Numerical Examples

(3) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{S}}$
ABC	1	0
ABD	1	0
ABM	0	0
CD	1	1
MD	0	1
MC	0	1
Total	3	3

Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=6-3-3=0$

Numerical Examples

(4) Calculate the number of different types of geometric conditions in the following figure:

Known points $=2$ (baseline)
New points = 1 (M)
Total number of observation $O_{T}=12$
Number of necessary observations $O_{\text {nec }}=2 \times$ new points $=2 \times 1=2$
Total number of conditions $C_{T}=O_{T}-O_{n e c}=12-2=10$
Number of triangle conditions $C_{A}=\left(L-L^{\prime}\right)-\left(S-S^{\prime}\right)+1=(10-4)-(5-1)+1=3$

Number of side conditions $C_{S}=L-2 S+3=10-10+3=3$
Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=10-3-3=4$

Numerical Examples

(4) Calculate the number of different types of geometric conditions in the following figure:

Point by point

Point	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{S}}$
A	-	-
B	-	-
C	$2-1=1$	$2-2=0$
D	$3-1=2$	$3-2=1$
M	-	$4-2=2$
Total	$\mathbf{3}$	3

Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=10-3-3=4$

Numerical Examples

(4) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	\mathbf{C}_{A}	$\mathbf{C}_{\mathbf{s}}$
ABC	1	0
ABD	1	0
ABM	0	0
CD	1	1
MD	0	1
MC	0	1
Total	3	3

Number of local conditions $C_{\text {Local }}=C_{T}-C_{A}-C_{S}=10-3-3=4$

End of Presentation

