

Geodesy 1 (GED203) Section No: 9

Types of Conditions in Triangulation Networks

Reda FEKRY

reda.abdelkawy@feng.bu.edu.eg

CONTENTS

- > What is meant by conditions?
- > Types of conditions
- Different methods to compute internal conditions
- ➢ Examples

What is a condition in control survey?

• A condition means

• Please follow the board

➤ Scale

The computed length of a side must equal its known length or differ by a value within tolerance.

> Orientation

The computed azimuth of a side must equal its known azimuth or differ by a value within tolerance.

Position

The computed coordinates of a point must equal its known coordinates or differ by a value within tolerance.

Internal (Geometric) Conditions

Local condition

The sum of angles taken at certain station should equal a pre-specified value.

Side condition

The length of a side should equal specific value whatever the route used in calculation.

> Angle / Triangle condition

The sum of the internal angles of a polygon should equals $(n - 2) \times 180^{\circ} + \epsilon$

How to calculate the number of different types of internal conditions?

(1) By Law

(1) By Law

 \succ The total number of geometric conditions C_T in a figure is:

 $C_T = O_T - O_{nec.}$

Where:

..... Total number of observations

O_{nec.} Number of necessary observations

Local

Angle

(1) Angle Conditions

\succ The total number of geometric conditions C_A in a figure is:

$$C_A = (L - L') - (S - S') + 1$$

Where:

L..... Total number of lines.

L′ Number of lines observed in one direction.

S Total number of stations.

S' Number of unoccupied stations.

Side

(1) By Law

(2) Side Conditions

(1) **By Law**

\succ The total number of side conditions $C_{\rm S}$ in a figure is:

 $C_{S} = L - 2S + 3$

Where:

L Total number of lines.

S Total number of stations.

Geodesy 1 - Dr. Reda Fekry

(1) By Law

(3) Local Conditions

> The total number of Local conditions C_{Local} in a figure is:

$C_{Local} = C_T - C_A - C_S$

Where:

(1) By Law – Example

Calculate the number of different types of internal conditions in the following braced quadrilateral.

- Known points = 2 (baseline)
- New points = 2 (C, D)
- Total number of observation $O_T = 8$

Number of necessary observations $O_{nec} = 2 \times new \ points = 2 \times 2 = 4$

Total number of conditions $C_T = O_T - O_{nec} = 8 - 4 = 4$

Number of triangle conditions $C_A = (L - L') - (S - S') + 1$

= (6 - 0) - (4 - 0) + 1 = 3

- Number of side conditions $C_S = L 2S + 3 = 6 8 + 3 = 1$
- Number of local conditions $C_{Local} = C_T C_A C_S = 4 3 1 = 0$

(2) Point By Point

(2) Point By Point

(3) Triangle By Triangle

(3) Triangle By Triangle

Geomatics Engineering Department

Which method should be used?

(1) Calculate the number of different types of geometric conditions in the following figure:

Known points = 2 (baseline)

New points = 3 (C, D, E)

Total number of observation $O_T = 12$

Number of necessary observations $O_{nec} = 2 \times new \ points = 2 \times 3 = 6$

Total number of conditions $C_T = O_T - O_{nec} = 12 - 6 = 6$

Number of triangle conditions $C_A = (L - L') - (S - S') + 1 = (10-4) - (5-1) + 1 = 3$

Number of side conditions $C_S = L - 2S + 3 = 10 - 10 + 3 = 3$

(1) Calculate the number of different types of geometric conditions in the following figure:

Point	C _A	Cs
А	-	-
В	-	-
С	2 -1 = 1	2 - 2 = 0
D	3 -1 = 2	3 - 2 = 1
Е	0	4 - 2 = 2
Total	3	3

Point by point

(1) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	C _A	Cs
ABC	1	0
ACD	1	0
CDE	0	0
BD	1	1
EA	0	1
EB	0	1
Total	3	3

Numerical Examples

(2) Calculate the number of different types of geometric conditions in the following figure:

Known points = 2 (baseline)

New points = 3 (C, D, E)

Total number of observation $O_T = 13$

Number of necessary observations $O_{nec} = 2 \times new \ points = 2 \times 3 = 6$

Total number of conditions $C_T = O_T - O_{nec} = 13 - 6 = 7$

Number of triangle conditions $C_A = (L - L') - (S - S') + 1 = (9-0) - (5-0) + 1 = 5$

Number of side conditions $C_S = L - 2S + 3 = 9 - 10 + 3 = 2$

(2) Calculate the number of different types of geometric conditions in the following figure:

Point by point Point **C**_A C_s Α В С 2 - 1 = 12 - 2 = 02 - 1 = 12 - 2 = 0D 4 - 2 = 2E 4 - 1 = 35 2 Total

Numerical Examples

(2) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	C _A	Cs
ABC	1	0
ABE	1	0
EBD	1	0
EC	1	1
ED	1	1
Total	5	2

(3) Calculate the number of different types of geometric conditions in the following figure:

Known points = 2 (baseline)

New points = 3 (C, D, M)

Total number of observation $O_T = 12$

Number of necessary observations $O_{nec} = 2 \times new \ points = 2 \times 3 = 6$

Total number of conditions $C_T = O_T - O_{nec} = 12 - 6 = 6$

Number of triangle conditions $C_A = (L - L') - (S - S') + 1 = (10-4) - (5-1) + 1 = 3$

Number of side conditions $C_S = L - 2S + 3 = 10 - 10 + 3 = 3$

(3) Calculate the number of different types of geometric conditions in the following figure: $\hfill D$

Point by point Point C_A **C**_S Α В С 2 - 1 = 12 - 2 = 03 - 1 = 23 - 2 = 1D Μ 0 4 - 2 = 23 Total 3

A M B C

(3) Calculate the number of different types of geometric conditions in the following figure: $\hfill D$

Triangle by triangle

Triangle	C _A	Cs
ABC	1	0
ABD	1	0
ABM	0	0
CD	1	1
MD	0	1
МС	0	1
Total	3	3

Numerical Examples

(4) Calculate the number of different types of geometric conditions in the following figure:

Known points = 2 (baseline)

New points = 1 (M)

Total number of observation $O_T = 12$

Number of necessary observations $O_{nec} = 2 \times new \ points = 2 \times 1 = 2$

Total number of conditions $C_T = O_T - O_{nec} = 12 - 2 = 10$

Number of triangle conditions $C_A = (L - L') - (S - S') + 1 = (10-4) - (5-1) + 1 = 3$

Number of side conditions $C_S = L - 2S + 3 = 10 - 10 + 3 = 3$

(4) Calculate the number of different types of geometric conditions in the following figure:

Point by point Point C_A **C**_S Α В С 2 - 2 = 02 - 1 = 13 - 1 = 23-2 = 1D Μ 4 - 2 = 23 Total 3

A M B C

(4) Calculate the number of different types of geometric conditions in the following figure:

Triangle by triangle

Triangle	C _A	Cs
ABC	1	0
ABD	1	0
ABM	0	0
CD	1	1
MD	0	1
MC	0	1
Total	3	3

End of Presentation

THANK YOU

